Electronic and Optoelectronic Polymers

Wen-Chang Chen

Department of Chemical Engineering Institute of Polymer Science and Engineering National Taiwan University

Outlines

- <u>History of Conjugated Polymers</u>
- <u>Electronic Structures of Conjugated Polymers</u>
 - **Brief introduction**

Chemistry of Conjugated Polymers

Doping concepts of Conjugated Polymers (Conducting Polymers)

- **Polymer Light-emitting Diodes**
- Polymer-based Thin Film Transistors
- **Polymer-based Photovoltaics**

Electronic Parameters of Conjugated Polymers

Eg: Band gap = IP - EA

IP: Ionization potential

EA: Electron affinity

BW: Bandwidth

LUMO: Lowest Unoccupied Molecular Orbital

HOMO: Highest Occupied Molecular Orbital

Electronic Parameters of Conjugated Polymers

Ionization Potential (IP)

The energy required for the ionization reaction. The minimum energy needed to remove an electron from the top of the valence band to vacuum level

 $P \longrightarrow P^+ + e^-$

Thus, the IP values for a polymer indicate the susceptibility or ease of removing electrons from the polymer by a suitable electron acceptor. IP values measure the dopability of a polymer to a p-type conductor or ease of hole injection .

Electron Affinity (EA)

The energy needed to add an electron to the bottom of the conduction band or LUMO level from the vacuum level.

 $P + e^- \longrightarrow P^{--}$

EA measures the ease of electron injection or n-type dopability

Bandgap or energy gap (Eg) = the smallest energy gap transition between π and π * bands = HOMO-LUMO energy gap

π -Conjugated Molecules

Have been around a long time with numerous examples from organic and biological chemistry

Molecules composed of alternating single and double bonds

Towards Organic Semiconductors

Electronic Structures of Atomic Carbon in Conjugated Molecules

- mix 3 orbitals, get a set of 3 sp² orbitals
- the other p orbital remains unaffected
- each sp² hybrid and p orbital contains a single unpaired electron

Molecular Orbital (MO) Theory of Conjugation

- both C are sp2 hybridized.
- 4 C-H s bonds are made by the interaction of C sp² with H1s orbitals (see red arrows)
- 1 C-C s bond is made by the interaction of C sp² with another C sp² orbital (see green arrow)
- 1 C-C p bond is made by the interaction of the C p with the other C p orbital (see black arrows

Formation of the Molecular Orbitals for ethylene

Evolution of a Semiconductor Bandgap with Increasing Chain Length

 π to π * Energy Gap in a Series of Polyenes of Increasing Chain Length

The Hypothesis of Alternation -Peirels Instability

Why is $Eg \neq 0$ as n $\longrightarrow \infty$

The reason of a finite band gap in is instability of the ground state of a chain of equal bonds with respect to nuclear shifts that create a configuration having alternating lengths. Bond length alternations is due to gain in electronic energy that compensates the loss of elastic energy.

Five Main Contributions to Electronic Structures of Conjugated Polymers

 $Eg = E^{\,\delta\,r} + E^{\,\theta} \, + E^{\text{Res}} + E^{\text{Sub}} + E^{\text{Int}}$

- E^{δr}: the energy related to Bond Length Alternation (BLA).
- E^θ: the mean deviation from planarity.
- E^{Res}: the **aromatic resonance energy** of the cycle.
- E^{Sub}: the inductive or mesomeric electric effects of eventual **substitution**.
- E^{Int}: the **intermolecular** or **interchain coupling** in the solid state.

Jean Roncali, Chem. Rev., 1997, 97, 173.

How to Minimize the BLA Along the Backbone for Small Eg?

van Mullekom et al., Mater. Sci. Eng. A, 2001, 32, 1.

How to Maintain the Planarity Along the Backbone for Small Eg?

Orbital overlap varies nearly with the cosine of the twist angle, any departure from coplanarity will result in an increase of Eg (E θ).

- Ladder type → twist inhibition
- Avoid steric hindrance
- Aromatic versus quinoid form (sp³ versus sp²)
- Intermolecular hydrogen bonding

How to Control the Aromaticity Along the Backbone for Small Eg?

- Aromaticity results in a competition between π electron confinement within the rings and delocalization along the chain.
- Aromatic and quinoid forms are not energetically equivalent.

How to Control the Substituents for Small Eg?

Structure (IP, EA, Eg) eV

methoxy group will decrease the IP (destabilization of VB) cyano group will increase the EA (stabilization of CB)

JL Bredas, AJ Heagger Chem. Phys. Lett, 1994, 217, 507.

Experimental Measurements of Electronic Structure Parameters of Conjugated Polymers

Bandgap (Eg)

Optical absorption spectrocopy (UV-Vis-NIR)

IP & EA

Photoelectron spectroscopy

- Need ultrahigh vacuum techniques
- UPS (from UV)
- XPS (ESCA, from X-ray)
- Accurate but more difficult to do

Electrochemical redox potential (cyclic voltammetry)

Estimate from electrochemical redox potential

- $IP = E_{ox}^{ox} + 4.4 eV$
- $\mathbf{EA} = \mathbf{E}^{\mathrm{red}}_{\mathrm{onset}} + 4.4 \, \mathrm{eV}$

Computational Techniques for Conjugated Polymers

Employ for the study of the electronic structure of π -conjugated ploymers should be :

- Applicable to such complex conjugated systems
- Amenable to geometry optimization and should yield good calculation geometrical parameters
- <u>Able to produce good electronic structure characteristics, such</u> <u>as bandgap, ionization potential (IP), electron affinity (EA),</u> <u>charge distribution and wave functions</u>
- <u>Capable of yielding good results for other calculated physical</u> <u>observables</u>, such as force constants, transition dipole, etc

Computational Techniques for Conjugated Polymers

Molecular (Oligomer) method

Extrapolating the linear curve of the HOMO-LUMO gap of the conjugated oligomer against the reciprocal of the number of monomer units (1/n) affords a prediction of the band gap

PBC (periodic boundary condition

Single, infinite, gaseous state, one-dimensional polymer chain was treated.

Computational Techniques for Conjugated Polymers <u>Methodology</u>

DFT/B3LYP/6-31G*

DFT: density functional theory

reliable for the non-planar structures giving reasonable gap values for most conjugated polymer system B3LYP: hybrid functional 6-31G*: basis set Performed on Gaussion 03 program

Analyzed Geometry Parameters and Properties

Bridge length (L_B) = length between two conjugated units

Bond length alternation (BLA) = L(C-C)- L(C=C)

Torsional angle = tilt between two conjugated planes

Intramolecular charge transfer = net Mulliken charge distribution

Electron effective mass
$$m^* = \eta^2 \left(\frac{d^2 \varepsilon}{d\kappa^2} \right)$$

Theoretical Analysis on New Conjugated Poly(azomethine)s For Thin Film Transistors

Cheng-Liang Liu,¹ Fu-Chuan Tsai,¹ Chao-Chung Chang,¹ Wen-Chang Chen,^{1,2} and Hsi-Hsin Shih³

 Department of Chemical Engineering and 2: Institute of Polymer Science and Engineering, National Taiwan University
Union Chemical Laboratory, Industrial Technology Research Institute

Research Objectives

- Discuss the relationships among the optimized geometries, electronic structures and polymer structures of conjugated polymers
 - Influences of different linkage on electronic structures
 - □ Influences of replacement of phenyl ring on PPI by thiophene
 - Influences of electron Donor/Acceptor six-member ring on the electronic properties of poly(azomethine)s
 - Influences of electron Donor/Acceptor five-member ring on the electronic properties of coplanar poly(azomethine)s
- Molecular designs of coplanar poly(azomethine)s for OTFT applications

Theoretical Analysis

Methodology

Periodic Boundary Condition (PBC)

– Single, infinite, gaseous state, one-dimensional polymer chain was treated.

DFT/B3LYP/6-31G

DFT: density functional theory

- reliable for the non-planar structures
- giving reasonable gap values for most conjugated polymer system

B3LYP: hybrid functional

6-31G: basis set

widely used for the calculation

Performed on Gaussion 03 program

Geometry of Azomethine model compound

Twisted nature of azomethine model compound: the X-ray diffraction results of the small molecule *trans-N*-benzylideneaniline

Influences of Linkages on Electronic Structures

Geometries & Electronic Structures of PPV, PPI and PPN

Geometries & Electronic Structures

Order of IP/EA :

e-donating \leftarrow **PPV** (C=C) < **PPI** (C=N) < **PPN** (N=N) \leftarrow e-accepting

Order of Eg : **PPN** (N=N) < **PPV** (C=C) < **PPI** (C=N)

twisted conformation

planar conformation

Influences of Replacement of Phenyl Ring on PPI by Thiophene

Optimum Geometries & Electronic Structures of PTPI

E_g ((PTPI)	$< E_g$	(PPI):
---------	--------	---------	-----------------

- **u** smaller Φ in **PTPI**
- **\square** smaller Δr in **PTPI**

\square extensive π -electron delocalization of thiophene ring in **PTPI**

r1	r2	Δ r	Ф	IP	EA	E_{g}
(C-C)	(C=N)	(r1-r2)	Ψ	(eV)	(eV)	(eV)
1.463	1.293	0.176	30.4	5.47	2.63	2.83
1.435	1.297	0.138	24.0	5.32 (↑)	2.97 (↓)	2.35

- \downarrow : HOMO/LUMO stabilization
- **↑ : HOMO/LUMO destabilization**

Influences of Electron Donor/Acceptor Six-member Ring on Electronic Properties of Poly(azomethine)s

Optimum Geometries & Electronic Structures of PTPI, PTPyI and PTNI

ው (0)	IP	EA	Eg
$\Psi(0)$	(eV)	(eV)	(eV)
24.0	5.32	2.97	2.35
30.2 (↑) (+6.2)	5.57 (↓) (+0.25)	3.16 (↓) (+0.19)	2.40 (+0.05)
30.6 (↑) (+6.6)	5.16 (↑) (-0.16)	2.66 (↑) (-0.31)	2.50 (+0.15)

Optimum Geometries & Electronic Structures of PTPI, PTPyI and PTNI

- The replacement of phenyl ring either by the eaccepting pyridine or by the e-donating naphthalene leads to more twisted conformation and thus higher E_g obtained.
- The slightly decreased E_g of PTPyI in comparison with PTNI is due to the small intra-charger transfer along the polymer chain induced by the eaccepting pyridine.

Influences of Electron Donor/Acceptor Five-member Ring on Electronic Properties of Coplanar Poly(azomethine)s

Geometry of Azomethine model compound

A planar configuration of the monoazomethine showed by X-ray crystal analysis

Polymer Reprint 2004, 45, 253

Optimum Geometries of PEEI and PYYI

PYYI

PEEI

Optimum Geometries of PTTI, PThThI, and PFFI

PTTI

Geometries & Electronic Structures of Coplanar Poly(azomethine)s

	R _{C1-C2}	R _{C2=N}	R _{C3-N}	δ	Φ_1	Φ_2	IP	EA	Eg
	(Å)	(Å)	(Å)	(Å)	(degre e)	(degre e)	(eV)	(eV)	(eV)
1 (PPI)	1.463	1.293	1.410	0.021	0.9	30.4	5.47	2.63	2.83
2a (PEEI)	1.414	1.314	1.345	0.023	0.2	0.6	4.25	3.14	1.11
2b (PYYI)	1.427	1.309	1.371	0.006	1.8	12.1	4.40	2.73	1.67
2c (PFFI)	1.424	1.309	1.348	0.025	0.3	0.1	4.89	3.33	1.56
2d (PTTI)	1.423	1.308	1.357	0.018	0.3	0.3	5.03	3.61	1.42
2e (PThThl)	1.436	1.296	1.363	0.040	0.6	0.8	7.19	4.72	2.47

Electronic Structures of The Studied Poly(azomethine)s

■ IP increases in the following order:

-

e-donating

 $\label{eq:peel} \textbf{PEEI} < \textbf{PYYI} < \textbf{PFFI} < \textbf{PTTI} < \textbf{PPI} < \textbf{PThThI}$

• EA increases in the following order:

PPI < PYYI < PFFI < PEEI < PTTI < PThThI

e-accepting

Eg increases in the following order:

Donor/Acceptor system

PEEI < PTTI < PFFI < PYYI < PThThI < PPI

twisted conformation

coplanar conformation

Band Structures of Organic Thin Film Transistor Materials

Band Structures of Coplanar Poly(azomethine)s

	Valence bandwidth (meV) and effective mass	Conduction bandwidth (meV) and effective mass	IP (eV)	EA (eV)	E _g (eV)
1 (PPI)	247 (0.742 m _e)	298 (0.688 m _e)	5.47	2.63	2.83
2a (PEEI)	613 (0.233 m _e)	644 (0.223 m _e)	4.25	3.14	1.11
2b (PYYI)	562 (0.406 m _e)	552 (0.403 m _e)	4.40	2.73	1.67
2c (PFFI)	590 (0.376 m _e)	556 (0.343 m _e)	4.89	3.33	1.56
2d (PTTI)	572 (0.278 m _e)	583 (0.275 m _e)	5.03	3.61	1.42
2e (PThThl)	318 (0.530 m _e)	287 (0.504 m _e)	7.19	4.72	2.47
3 (PPV)	373 (0.466 m _e)	392 (0.446 m _e)	4.78	2.31	2.47
4 (PAZ)	347 (0.474 m _e)	405 (0.464 m _e)	5.92	3.61	2.31

Conclusions

- The twisted conformation of aromatic poly(azomethines) is attributed to the repulsion force between the adjacent hydrogen atoms on the C=N linkage and the N-phenylene.
- The coplanar geometry of PPV and PAZ result in a smaller Eg than that of PPI. The IP and EA of PPI are in the intermediate between PPV and PAZ.
- The coplanar configuration or donor-acceptor intrachain charge transfer resulted in enhanced electronic properties of PEEI PYYI, PFFI, and PTTI in comparison with PPI, including lower Eg, higher BW, and lower effective mass.
- The proposed coplanar poly(azomethine)s for OTFT applications.

